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NOMENCLATURE 

dimensionless axial velocity, tangential velo- 
city and temperature; 
acceleration due to gravity; 
radial, tangential and axial co-ordinate ; 
temperature ; 
radial, tangential, axial and angular velocity ; 
coefficient of thermal expansion ; 
thermal dilfusivity ; 
kinematic viscosity 
dimensionless axial co-ordinate; 
Grashof number = ga(T$ - T,) r3/v2 ; 
Prandtl number = V/K ; 

Reynolds number = &2/v. 

Subscripts 
0, w, co, value at the origin, z = 0 and z -t co, res- 

pectively ; 
1,2, radial, axial component. 

1. INTRODUCTION 

IN THE presence of buoyancy, the von K&m&n [l] sim~a~ty 
solution to the problem of laminar Now and heat transfer 
from a horizontal rotating disc requires that the radial 
temperature distribution be quadratic (Duncan 121, Luk, 
Millsaps and Pohlhausen [3], Rotem and Claassen [4]). 
Luk et al. [3] have discussed the buoyant and dissipative 
flow above an isothermal rotating disc whereas Rotem and 
Claassen 141 have investigated the effect of slow rotation on 
the natural convection above a heated horizontal surface. 
Duncan [2] has considered the low Rossby number re8ime 
of buoyancy-induced convective perturbations of a rigid- 
body rotation of a stably stratified fluid in the gap between 
a top disc heated quadratic~ly and an insulated lower disc. 

* Presently, Mechanical Engineering Department. Clark- 
son College of Technology, Potsdam, New York 13676, 
U.S.A. 

In this paper, the effect of buoyancy on the flow and heat 
transfer above a heated, horizontal, rotating disc is investi- 
gated. The flow is assumed steady, laminar, incompressible 
and nondissi~tive. The transport properties of the fluid 
are considered constant. The Boussinesq approximation is 
applied to the governing equations, which are then solved 
by a numerical method for a value 0701 of Prandtl number 
and GrJRef between 0 and 1. Buoyancy is seen to alter only 
the hydrostatic pressure distribution over an isothermal 
disc whereas, with quadratic surface temperature, the 
influence of buoyancy is more on the secondary motion 
over the disc than on the rotation oC or the heat transfer by, 
the fluid Buoyancy and rotation aid each other above 
heated, and below cooled, discs while they are in opposition 
below heated, and above cooled, discs. 

2. THE GOVERNING EQUATIONS 

In an inertial cylindrical frame of reference, with its 
z-axis oriented antiparallel to gravity, the Boussinesq 
equations under the similarity assumptions of von Karman 
[l] can be reduced to (Duncan [Z]): 

(2.4) 

The temperature distribution : 

(7’ - T,) = +r’T$) + T,(z). 

The boundary conditions are: 

w(O) = $ (0) = 0, v(O) = ra ; (T(0) - T,) 

(2.5) 
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= fr2T,(O) + 7*(O) 

u’(z) = constant. I,( JC) = ‘r,(a) = TL( TI) = 0. 

These equations are now non-dimensionalized 
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(2.6) 

using 
vtL- *. vfQf. rQ. TI: - ‘& as the characteristic scales for 

length, axial velocity, tangential velocity, and temperature 

difference, respectively. The dimensionless equations are’ 

G, 
ll,,i 

E - FF”’ = 4GG’ - 2 Rei H, (2.7) 

G‘” = G’F _ GF’ (2.X) 

H; = Pr(H; F ~ H,F’) (2.9) 

H; = PrH’F - 2H, (2.10) 

where the primes denote differentiation w.r.t. [ and T;: is the 

wall temperature at r = (2v/Q)* in order to make H,(O) = 1. 

The boundary conditions : 

F(0) = 0 = F’(O), G(O) = 1 = H,(O), H,(O) 

= (To - T, ),(T: - To) (2.11) 

F(m) = constant. G(,;o) = HI(~) = H,(,m) = 0. (2.12) 

There are three parameters Gr/Re*, Pr. (T$ - To)> 
(To - T,) in these equations that could be prescribed 

arbitrarily. The results here are restricted to (i) a value of 

Pr = 0701 corresponding to air, (ii) no axial temperature 

variation i.e. To = T,. and (iii) values of Gr/Ret between 0 

and 1. 

3. NUMERICAL SOLUTIONS 

The equations (2.7H2.12) have been solved by Sreeni- 

vasan [6] using an initial-value technique or the shooting 

method. The integration is based on a predictor-corrector 

method due to Hamming (Ralston and Wilf [5]). By an 

integral check, analogous to those used by Luk rr LI/. 1.31. 

five digits were found to be significant in the initial value\ 

F”(0). F”’ (0). G’(0). H;(O) and H;(O) reported in Tahlc i. 

4. DISCUSSION 

The similarity transformation of von Karman applies IO 

the combined convection problem only when the horizontal 

distribution of temperature in the fluid is quadratic. Thts 

fact can be deduced directly from the momentum equations 

using Batchelor’s [7] approach. One consequence of this is 

that the effect of buoyancy in the flow over an isothermal 

disc is trivial in that it alters only the hydrostatic pressure 

distribution in the fluid. There is no change in the flow or 

heat transfer. Experimental verification of this result i, 

likely to be difticult since the similarity condition with a 

finite-size rotating disc are unsatisfactory. In addition, 

convective instability and edge effects could cause large 

FIN;. 1. Axial velocity profile 

Ttrhle 1. Initial dues 

_____- ~-- __I__-__ -_--- ____~ ~- 

Sl. No. E; -F” (0) F”’ (0) -G’ (0) -H; (0) H; (0) 

0.0 
01 
0.2 
0.3 
0.4 
0.5 
06 
o-7 
0.8 
0.9 
1.0 

=_ 

1.020466 2.0 0.615922 0515042 2.375666 

1.172468 2.287934 0661950 0.557397 2.088292 

1.299832 2.539832 0693886 0.585853 1.952097 

1.414110 2.773064 0719636 0.608565 1.860666 

I.519425 2.993742 0741512 0627741 1.791978 

1.618015 3.205063 0760691 0644484 1.737054 

1.711273 3.408980 0.777861 0659430 1.691618 

1~x00157 3.606898 0793440 0.672953 1.652917 

1.885328 3.799573 0~807778 0.685387 l-619129 

I.967308 3.987807 0821067 0.696893 1.589296 

2.046498 4.172148 0.833469 0707620 1.562622 
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discrepancies. The only experimental work known so far 
using a horizontal disc is due to Young [S] and it reports an 
increase in heat transfer. Cobb and Saunders [9] and 
Richardson and Saunders [JO] consider Young’s results to 
be subject to large experimental errors. 

It can also be seen clearly that buoyancy gives rise to a 
radial pressure gradient, in the case of quadratic tempera- 
ture distribution, which is favorable above a heated or 
below a cooled disc but adverse below a heated or above a 

FIG. 2. Radial velocity profile. 

cooled disc. The centrifugal forces in the boundary layer are 
assisted by buoyancy in the former situation while they are 
resisted in the latter. Thus in the first case, the secondary 
flow should increase. As the energy transfer, by virtue of 
axial symmetry, is due entirely to the secondary motion 
there should be an increase in heat transfer. Jn the other case, 
the adverse pressure gradient reduces and retards the 
secondary Row and also decreases the heat transfer. Thus 
when buoyancy is sufftciently large, the secondary motion 
could be largely suppressed and separation tendencies might 
develop. 

The numerical results presented in Table 1 contirm these 
observations. In the flow aided by buoyancy, the axial 
velocity, Fig. 1, increases by 75 per cent and the frictional 
resistance to the secondary motion is doubled when 
Gr/Re* = 1. The radial velocity profile, Fig 2, gradually 
assumes a shape typical of buoyancy dominated flow as 
Gr/Re* increases. The frictional resistance to rotation and 
heat transfer due to Tr increase only by about 35 per cent in 
the range (0,l) of Gr/Re*. The profiles of tangential velocity 
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FIG. 3. Tangential velocity profile. 
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FIG. 4. Temperature profile H,. 
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Frc;. 5. Temperature profile Hz. 

and horizontal temperature gradient, Figs. 3 and 4, do not 

change significantly. Thus the effect of buoyancy is observed 

to be more pronounced on the secondary motion than on 

the rotation of the fluid. Likewise, the change in frictional 

resistance to the radial flow is larger than the change in 

heat transfer. The heat transfer due to ‘4 is into the disc in 

the case r, = T_,. But this is only a small fraction of the 

total heat transfer at large distances from the axis. The 

component ‘r2 is driven mainly by the radial conduction of 

heat due to r, when 7;, = T, This energy can only go into 

the wall. The profile of ‘r2. Fig. 5. gradually collapse\ as 

GKRP~ increase\ 

At Gr RP’ = 1. the velocities induc& by buoyant! arc (If 

the same order as those due to rotation. Hence. to get 
results further. the equations should be recast Into a form 

based on quantities Characterizing natural convection flow 

on the line5 followed by Rotem and C’loassen [4). 
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NOMENCLATURE 

dS,,. dS,. dS,, element of area of emitter. reflector. and 

receiver: 
(r,,. xi,. zo). {u. y. z). (X. Y: Z). coordinates of d.S,.. dS, 

and dS,, respectively: 

r. 

1.. 

i’. 

distance from emitter. cl&,. to reflector. 

dS,: 
distance from reflector. dS,. to reoeiler. 

dSz: 
reflectivity of reflector: 


