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NOMENCLATURE

F,G,H, dimensionless axial velocity, tangential velo-
city and temperature;

g, acceleration due to gravity;

r.8,z radial, tangential and axial co-ordinate;

T, temperature ;

u,v,w, €, radial, tangential, axial and angular velocity;

®, coefficient of thermal expansion;

K, thermal diffusivity;

v, kinematic viscosity

g, dimensionless axial co-ordinate ;

Gr, Grashof number = go(T% — To)r*/v*;

Pr, Prandtl number = v/k;

Re, Reynolds number = r*Q/v.

Subscripts

0,w, 00, value at the origin, z =0 and z — oo, res-
pectively;

1,2, radial, axial component.

1. INTRODUCTION

IN THE presence of buoyancy, the von Karméan [1] similarity
solution to the problem of laminar flow and heat transfer
from a horizontal rotating disc requires that the radial
temperature distribution be quadratic (Duncan [2], Luk,
Millsaps and Pohlhausen [3], Rotem and Claassen [4]).
Luk et al. [3] have discussed the buoyant and dissipative
flow above an isothermal rotating disc whereas Rotem and
Claassen [4] have investigated the effect of slow rotation on
the natural convection above a heated horizontal surface.
Duncan [2] has considered the low Rossby number regime
of buoyancy-induced convective perturbations of a rigid-
body rotation of a stably stratified fluid in the gap between
a top disc heated quadratically and an insulated lower disc.
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In this paper, the effect of buoyancy on the flow and heat
transfer above a heated, horizontal, rotating disc is investi-
gated. The flow is assumed steady, laminar, incompressible
and non-dissipative. The transport properties of the fluid
are considered constant. The Boussinesq approximation is
applied to the governing equations, which are then solved
by a numerical method for a value 0:701 of Prandtl number
and Gr/Re? between 0 and 1. Buoyancy is seen to alter only
the hydrostatic pressure distribution over an isothermal
disc whereas, with quadratic surface temperature, the
influence of buoyancy is more on the secondary motion
over the disc than on the rotation of, or the heat transfer by,
the fluid. Buoyancy and rotation aid each other above
heated, and below cooled, discs while they are in opposition
below heated, and above cooled, discs.

2, THE GOVERNING EQUATIONS

In an inertial cylindrical frame of reference, with its
z-axis oriented antiparallel to gravity, the Boussinesg
equations under the similarity assumptions of von Kdrmén
[1] can be reduced to (Duncan [2]):
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The boundary conditions are:
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=3’ T,(0) + T,(0)

wiop) = constant, vfoc) = Ti{w) = Thriaxn) = 0. (2.6)

These equations are now non-dimensionalized using
viEQ73 viQY rQ, T* — T, as the characteristic scales for
length, axial velocity, tangential velocity, and temperature
difference, respectively. The dimensionless equations are:

or

F - FF” =4GG -2 H, 27
Re?

G'=GF - GF 29

H’1’=PV(H/1F*H1F,' 29

Ho — PrE - 2H, (2.10)

where the primes denote differentiation w.r.t. { and T} is the
wall temperature at r = (2v/Q)* in order to make H,(0) = 1.
The boundary conditions:

F(0) = 0 = F'(0), G(0) = 1 = H,(0). H,(0)

= (T, = TMTE=T)  (211)

F(oo) = constant, G(oo) = H (o) = H,(o0) = 0. (2.12)

There are three parameters Gr/Rei, Pr, (T* — T,
(Ty — T,,) in these equations that could be prescribed
arbitrarily. The results here are restricted to (i) a value of
Pr = 0701 corresponding to air, (i) no axial temperature
variation ie. T, = T, . and (iii) values of Gr/Re* between 0
and 1.

3. NUMERICAL SOLUTIONS
The equations (2.7)42.12) have been solved by Sreeni-
vasan [6] using an initial-value technique or the shooting
method. The integration is based on a predictor-corrector
method due to Hamming (Ralston and Wilf [5]). Bv an
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integral check, analogous to those used by Luk et al [3],
five digits were found to be significant in the initial values
F7(0), F'" {0), G'(0). H{(0) and H%(0) reported in Tahle 1.

4. DISCUSSION

The similarity transformation of von Karman applies (o
the combined convection problem only when the horizontal
distribution of temperature in the fluid is quadratic. This
fact can be deduced directly from the momentum equations
using Batchelor’s [7] approach. One consequence of this is
that the effect of buoyancy in the flow over an isothermai
disc is trivial in that it alters only the hydrostatic pressure
distribution in the fluid. There is no change in the flow or
heat transfer. Experimental verification of this result is
likely to be difficult since the similarity conditions with a
finite-size rotating disc are unsatisfactory. In addition.
convective instability and edge effects could cause Jarge
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Table 1. Initial values

SI. No. —R(’i, ZF(0) Fo)
€

{00 1020466 20

2 01 1172468 2287934
302 1299832 2:539832
4 03 1414110 2773064
S04 1519425 2993742
6 05 1618015 3205063
7 06 1711273 3-408980
§ 07 1800157 3606898
9 08 1885328 3799573
10 09 1967308 3987807
T 10 2046498 4172148

-G (0) —H, {0) H;(0)
0-615922 0-515042 2-375666
(3-661950 0-557397 2-088292
0-693886 0-585853 1-952097
0-719636 0-608565 1-860666
0-741512 0-627741 1-791978
0-760691 0-644484 1737054
0-777861 0-659430 1-691618
0-793440 0-672953 1-652917
0-807778 0-685387 1-619129
0-821067 0-696893 1-589296
0-833469 0-707620 1-562622
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discrepancies. The only experimental work known so far
using a horizontal disc is due to Young [8] and it reports an
increase in heat transfer. Cobb and Saunders [9] and
Richardson and Saunders [10] consider Young’s results to
be subject to large experimental errors.

It can also be seen clearly that buoyancy gives rise to a
radial pressure gradient, in the case of quadratic tempera-
ture distribution, which is favorable above a heated or
below a cooled disc but adverse below a heated or above a

F16. 2. Radial velocity profile.

cooled disc. The centrifugal forces in the boundary layer are
assisted by buoyancy in the former situation while they are
resisted in the latter. Thus in the first case, the secondary
flow should increase. As the energy transfer, by virtue of
axial symmetry, is due entirely to the secondary motion
there should be an increase in heat transfer. In the other case,
the adverse pressure gradient reduces and retards the
secondary flow and also decreases the heat transfer. Thus
when buoyancy is sufficiently large, the secondary motion
could be largely suppressed and separation tendencies might
develop.

The numerical results presented in Table 1 confirm these
observations. In the flow aided by buoyancy, the axial
velocity, Fig. 1, increases by 75 per cent and the frictional
resistance to the secondary motion is doubled when
Gr/Re* = 1. The radial velocity profile, Fig. 2, gradually
assumes a shape typical of buoyancy dominated flow as
Gr/Re? increases. The frictional resistance to rotation and
heat transfer due to T increase only by about 35 per cent in
the range (0, 1) of Gr/Re®. The profiles of tangential velocity
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F16. 3. Temperature profile H,.

and horizontal temperature gradient, Figs. 3 and 4, do not
change significantly. Thus the effect of buoyancy is observed
to be more pronounced on the secondary motion than on
the rotation of the fluid. Likewise, the change in frictional
resistance to the radial flow is larger than the change in
heat transfer. The heat transfer due to T, is into the disc in
the case T, = T,. But this is only a small fraction of the
total heat transfer at large distances from the axis. The
component T, is driven mainly by the radial conduction of
heat due to 7, when T, = T,. This energy can only go into
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the wall. The profile of 7,, Fig. 5, gradually collapses as
GriRe? increases.

At Gr:Re* = 1. the velocities induced by buoyancy are of
the same order as those due to rotation. Hence to get
results further. the equations should be recast into a form
based on guantities characterizing natural convection flow
on the lines followed by Rotem and Claassen [4]
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NOMENCLATURE

element of area of emitter. reflector. and
receiver:

{Xpe For Zo)h L 3 2L XL Yo Z). coordinates of dS,. dS,
and dS,, respectively:

dS,. ds,. dS,,

v distance from emitter, dS,. to reflector.
dS,:

¥ distance from reflector, dS,. to receiver.
ds,:

o reflectivity of reflector:



